2221

NHS hi-tech wonders: from stem cell vision to tiny parasols fixing hearts

Some hospitals may look as if they are held together with sticking plaster, but the NHS is actually a hive of new technology. Our reporters assess some of the more innovative work going on across the UK.

Donor therapy for children with leukaemia

Later this year, doctors in London hope to start the first human trial of a radical new treatment for children with drug-resistant leukaemia. One- or two-year-old infants will have gone through multiple rounds of chemotherapy, to no avail. The best hospitals can do is make them comfortable.

The therapy is one of the most sophisticated medicine has ever seen. White blood cells – part of the immune system’s frontline defences – are collected from a healthy donor and effectively turned into a drug through genetic engineering. First, they are modified to hunt down their target: a protein that appears on leukaemia blood cells. Next, they are tweaked to make them invisible to drugs that suppress the child’s immune system during the treatment. Finally, the cells are modified again to ensure that when they are infused they do not attack the child.

Magnified white blood cells from a patient with leukaemia. Photograph: Steve Gschmeissner/Corbis

Magnified white blood cells from a patient with leukaemia. Photograph: Steve Gschmeissner/Corbis

If the trial is approved and goes as planned, about 50 million modified cells will course into the arteries and veins of each sick child and destroy the leukaemia cells . The hope is to drive the cancer into deep remission within four to six weeks. The children can then have bone marrow transplants to reboot their immune systems. When bone marrow transplants are done without clearing leukaemia first, the disease has a tendency to come back. A similar procedure has already shown promise in adults.

A medical team at Great Ormond Street hospital will run the trial for a French pharmaceutical company called Servier. But they have already had a glimpse of what the cells can do for children. Last June, a one-year-old girl,Layla Richards, became the first infant with acute lymphoblastic leukaemia to have the therapy. Her cancer did not respond to several rounds of chemotherapy and she had only a few months to live.

Layla’s medical team had some modified immune cells on ice – prepared for the trial by researcher Hong Zhan. It had taken her 18 days to modify and purify the cells in a small clean room on the hospital’s lower ground floor. The team thawed the cells out and gave them to Layla in June under a special licence granted by the Medicines and Healthcare Products Regulatory Agency (MHRA). Layla’s leukaemia abated and she had a bone marrow transplant three months later. So far, she is doing well.

“This could really only have happened on the NHS, where there is a wealth of expertise and people across many disciplines willing to give their time and energy,” said Prof Waseem Qasim, leader of the clinical trial.

Adrian Thrasher, professor of paediatric immunology at Great Ormond Street, admits the special licence system has critics. Some fear untested treatments could be used prematurely. “It’s very well-regulated, and we do it only in very well-considered cases,” he says. “And often you get results like we’ve seen with Layla.”

 

Keyhole heart surgery using tiny ‘parasols’

At the cutting edge of keyhole surgery on the NHS is something that looks like a tiny pen lid-sized parasol.

For years, doctors have operated through tiny incisions to remove appendices and gallbladders, diagnose and treat cancers, even mend or replace valves and arteries around the heart. Now, at Bristol Heart Institute, there is a trial for an even more ambitious procedure: to perform keyhole surgery in the middle of the heart.

Every year, nearly 3,000 people in the UK have open-heart surgery to repair or replace their mitral valve, a small oval measuring about 3-5cm across, with an elliptical opening to allow blood to flow towards the aorta and out of the heart. If the valve becomes weak, blood can leak back into the heart, triggering problems ranging from palpitations to heart failure.

Hard to reach and an unhelpful shape, opening up a patient’s chest has been the only way to solve the problem, putting it beyond the reach of hundreds of people considered too high-risk because they are frail (usually elderly) or have complicating problems such as lung disease. The Bristol unit, and two others in the UK, can now help those at-risk patients, using the parasol-shaped MitraClip, developed in the US.

It is inserted through the groin, into a vein going up into the “wrong” side of the heart (to avoid blocking and damaging the aortic valve). A pin punctures the heart wall, the clip is pushed through into the valve and then drawn back until it clamps the opening together in the middle. One surgeon guides the tube by hand while another watches on a screen and gives directions: “left a bit, right a bit”, as BHI consultant Mandie Townsend describes it.

A doctor using the MitroClip technology in an American hospital. Photograph: YouTube

A doctor using the MitroClip technology in an American hospital. Photograph: YouTube

The keyhole operation requires about double the staff in theatre for the four hours it takes, and the equipment is expensive. But patients usually recuperate on the cardiology ward and go home after two days, compared to two weeks in intensive care for those having a more common operation.

If the trials are successful, and the cost savings justify it, the system is likely to be offered more widely in the UK.

“Those patients come in and out of hospital with heart failure before they are treated: we send them home on day two, in a better clinical state and hopefully with a good quality of life, which is going to stop them re-presenting,” says Townsend.

569877aa0d3b3

DUHS establishes cardiology institute

KARACHI: Sindh Governor Dr Ishratul Ibad on Thursday inaugurated the Dow Institute of Cardiology (DIOC) and a gas power plant at a ceremony to mark the 12th anniversary of the Dow University of Health Sciences (DUHS) at the university’s Ojha campus.

Officials said the DIOC had been established at the tertiary level to provide high-quality, specialised, comprehensive and affordable cardiac care services under one roof to patients hailing from all segments of society.

They said the facility had the best possible cardiac diagnostic and treatment facilities, which included preventive cardiology, clinical cardiology, interventional cardiology, paediatric cardiology, cardiology electrophysiology, cardiac surgery, paediatric cardiac surgery, vascular surgery, thoracic surgery and anaesthesiology.

Governor Ibad said a long-standing need of the people was being met with the establishment of the DIOC. He said that the establishment of the operating theatre complex was a milestone.

He added that the established public sector facilities like the National Institute of Cardiovascular Diseases and the Karachi Institute of Heart Diseases had been providing affordable services to a large part of the mega city yet people living in areas like Gulshan, Gulistan-i-Jauhar, Malir, and Safoora Goth had to travel long distances to avail such services.Officials said the university had multiple standby generators to provide uninterrupted electricity, and termed the commissioning of the one-megawatt gas turbine generator as a leap forward.

Prof Masood Hameed Khan, vice chancellor of the DUHS, also spoke.